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ABSTRACT

A systematic method using S. Lie's continuous contact transformation
groups is developed in this report which enables one to search for all pos-
sible groups of transformations under which a given differential equation can
be transformed from a boundary value to an initial value problem. Examples
are worked out in detail as illustrations of the procedure.



1. INTRODUCTION

The preseni. repor® itreats cre of the most impertant applications of the
cencept. of contlcucus “ransformaticn groups: Lhe numerical solutlion of boundary
value prcplems as related +o the class cf transfcrmations from boundary value
Yo initial value problems. A completely new and general method will be developed
hased cn 8. Lie's certivucus and zorntact “ransformation group. In reference
6 the same corncep’ was applied tc develop a method of sgearching for all possible
grcups of transformafions in a similarity analysis of partial differential
equal lons.

A boundary value problem ls characterizel by the property tha its toundary
cenditicns are given a'. mcre ~harn one poin®t. Ir “he absence cf closed form
scluticns, numerical scluvicns mast “Lerelfore be cblained by a *rail-and-error
prccedure in which an unspecified toundary corndisicn is assumed arbiirarily.

The accuracy ¢f the assumphicn 1ls ther checkea bty She fulfilling of the boundary
condition a* the other poin+t.* I+ is therefore clear ithat the class of irans-
fermatlons from a boundary value tc an iritial value problem is of greatest
importance in that it eliminates the frial-and-error procedure and simplifies
ccnsiderably the process of numerical intvegration of the equation.

_The firs® research on thils type oI *ransformations was given by Topfer in
19127 for the numerical solution of the Blasius steady, two-dimensional boundary
layer equations with uniform mainstream velceciby. After a similarity transforma-
ion is made cof the governing partial differential equations, a *hiv+-crder ncn-
linear ordinary differential equaticn is obtained with the boundary conditions
speciried at twe points, namely, “wo at zerc and ore at infinity. The equation
is then iranscrmed by Topfer's methcd and *he problem becomes an intial value
problem, There seems to be littie work on this subject until 1962 when Klamkin®
published arn important paper which considerably extended the range cf applica-
bili*y of the method, including applicaticns to simubtaneous ordinary differential
equa‘ions. Both Topfer ard Klamkin's research consider the case in which bonndary
cerditions are givern a% zerc and irfinily. No general “‘heory, however, was given,
Mos*ly recerntly, “he mevheod was reccnsidsrzd frcm the point of view of the theory
cf “ransformaticn groups in Feferences 3 ard L. As a result, a general method
was, indeed, develcopel Tor given groups of transformations. The method treated
by Te¢pfer and Klamkin was Teound o te the speclal case c¢f a linear group of
LransTormations. Introducticr. of a "spiral group" of transformations made 1t
possible “o extsnd the methed %o a wide class of ordinary differential equations.
According %o this methced +he boundary conditicns can be specified at toth finite
and infinite points. Extensicn of bhe method “o problems in which two boundary
cenditiors reed 5o be tranaformed was alse made by usirg a mulbi-parameter group
of trarnsformations., As long as the group of fransformations is initially given,

*One would hope %e¢ eliminabe whis precedure by bransforming all conditions to
apply a® cre paini. This is ~he methed ocustlined here.,



vhe method is straightforward. However, the arbitrariness in the selection of
a practical group of transformations considerably limits the scope of applica-
tion of the method. There is, therefore, a need to develop a method of search-
ing for all possible groups of transformations for a given ordinary differential
equation without resorting to an initial selection.

In the present report, a systematic method using S. Lie's continuous con-
nact transofrmation groups will be developed which enables cne to search for
all possible groups of transformations under which the present method can be
applied. The method used follows closely the general group-theoretic method
given in Chapter L of Reference 6. A summary of the method given in References
3 and 4 will be given in the next section to summarize the present state of the
research and the general concept of the method. The general method will be
developed next, followed by two examples to show the steps which have to be
taken to get specific groups of transformation applicable to a given problem.



2. SIMPLE GROUP—THEORETIC METHOD

2.0 TOREWGRD

- This ar-icle gives a critical review and summary of the method of transfor-
maticn develcped in References 3 and 4 with certain modifications. In section

. 2.1, the general concept ¢f the method 1s illustrated by two examples, namely,

— the Rlasing’ preblem from bourndary-layer thecry and the heat conduction equation
with power-law heat generationo5 The boundary conditions in the first example

4 are given over an infini%te interval. In the second example the method is ap-

- lisd *0 a case where the bocundary conditvions are given over a finite interval.

p

A discugsion 1s presented cn the type of equations for which a spiral group is

resded. In secnion 2.2, exersion cf the methcd %o problems in which two boundary

— conditions reed 7o be transformed is iiscussed in detall. Extension to more
general *ypes of equations is givern in Sechion 2.3. Finally, Section 2.4 con-
=lues *‘he aiscussicn of the method with an evaluabtion cf its merits and limita-

— tions,

- z.1 ONE-PAKAMETER METHOD
— ¢.1.1 Lirear Group of Transfcrmations

Ccrsider the Blasius' equa*tion mentioned earlier where we want to solve
— the equation

2
d 1 1 d f .
- Slv2els - 0 (2.1)
dn 2 dn
- subject tc the boundary conditions
i (0) df (e
- f(o)r————_(-:o,—-———():l
. an dn
- A wne-parameter linear group of transformation
O [0}
- no= AT, f = AST (2.2)
- ts applied to this egquation, where A is “he parameter of transtormation and o
and np are *wo constants Lo be zetermined. Under this transformation, Eq. (2.1)
becomes




ne -
=

It is seen that the transformed equation, Eq. (2.3),
parameter A if the powers of A in bo*th terms are equal, l.e., if

Up - 301 = 20 - 204

Equation (2.3) then becomes

%% 1 _a%F
+ 5 7 =
e Ta T
From Eq. (2.4), we have
Qe = - &

i

)
3

(2.3)

will be independent of the

(2.4)

Y
N
—

(2.6)

This gives one relation between oy and qp. The other equation required for the

determination of o and ao is given by putting

2
df(go) _ .
an

from which

Qas-20, 47E(0)
A =z
an

(2.7)

(2.8)

Therefore, the transformed boundary condition will te independent of A iIf

s ~ 20y = 1

which leaves

(2.9)

2.10)



The two unknown constants, oy and qp, can then be obtained from Egqs. (2.6)
and (2.9) as

W = o2 = -3 (2.11)

Firally, the parameter of transformation, A, can be obtained by using the
criginal boundary condition at infinity which gives

Oo-0p 4F (oo)
A =
T 1 (2.12)

Therefore, we get

3/2
A = (af(”%} (2.13)

This example shows clearly the general concept of this technique. In
general, twoc unknown constants (e.g., o1 and oo in this example) are to be
determined if one dependent variable is involved. Two equations for their
determination are therefore necessary. One of these equations is obtained by
requiring *“hat the transformed ordinary differential equation be independent
cf the parameter of transformation, A; the other condition is formed by set-
tirg the original required boundary condition at the initial poirt equal to
the parameter A. Finally, the parameter of transformation, A, is determined
from *he boundary conditicn at the cother point. The solution of the problem
then consists of two steps. In the solution ¢f the Blasius equation, for
example, Eq. (2.5) is first solved with the boundary conditions

(o) = = = 0, —s> = 1 (2.14)

and the value of df(~)/dn is then obtained from the solution which in turn
gives A by Eq. (2.13). With oy, a» and A known, solution to Eg. (2.1) can be
computed using Eq. {(2.2). It is seen that the problem is reduced to an initial
value problem,

With Blasius' equation treated in this way, extensicn to a new class of
preblems involving finite intervals becomes more obvious. We now consider the
equation

SZ e T = 0 (2.19)



subject to the boundary conditions

This equation can be interpreted physically as heat conduction with power-law
neat generation5

A cne-parame*ter linear group of transformation

=]

(2.16)

is made and the two equations needed for the determination of oy and ap are
obtained by requiring that: (1) +he transformed equation to be independent of
A; (2) by setting

i = A 2.1’
From these two equatxions, (041 and 0o are found to be

1-n

@ = 5, 0z = 1 (2.18)

The boundary condition, (2.17), becomes

= = 1 (2.19)

The parameter A is then found by transforming the boundary condition a%
x = L, which gives

=l
i
O
o]
ot
o=
%1
i
[

(2.20a)

or,

L 2/(1-n)

= 2.20b
A X(where T = 0) (2.200)




To recapitulate, the procedure is therefore as follows: Firstly, the
transformed equation is solved with the boundary conditions T(0) = O and
the condition given in (2.19). Then, the value of X where T = 0 can be
determined from the solution. The parameter of transformation, A, is finally

computed from Eq. (2.20b). Again, the problem is reduced to an initial value
prcblem.

Consider next the rather general second-order differential equation

N 2 \I4 ny r. S
'1;1 As ( 5 ( y X = 0 (2.21)

subject to the two cases of boundary conditions

Case 1
o]
A"y (=)
so) = o LIl <
Cage II
dngL)
y(0) = 0o, 3" =0

Consider the linear group of transformations

T (2.22)

Under this group of transformation, Eq. (2.21) becomes

1;; ghi(Ba-2p1) *+ ni(Bo-pa) * riP2 * Sif

i=1
dzf my a7\ _ri —si
xAi—_é =) rtyixt o= o0 (2.23)

Equation (2.23%) will be independent of the parameter of transformation,
B, if “he powers of B in each term are equal, i.e.,

m; (Be-2B1) * ni{Pa-Pi) + r1 Bz * 51 B1

= mi(32‘251) + ni(B2-B1) +Ti Bp * S5P1 (2.24)

7



where i = 2,...,N. In general, (2.24) gives (N-1) equations with only two
unknowns, B; and Bs. The method is applicable only if the (N-1) equations

actually reduce to one independent equation. To illus*rate the problem that
may arise, the Falkner-Skan equation may be cited.

1. 31%f ar.2
- + - -— =
ST A T8 l: () ] 0 (2.25)

Under *“he linear group of “ransfcrma’icn defined by Eq. (2.22), Eq. (2.25)
becomes

Bo-381 4°F | 2Be-28, 15 d5F 2Bo-2p AT 2, o
B7Z 1d—ﬁ§+32 Zgﬁ—éw*stl-s’-‘ l(a-,—T)J—o (2.26)

which is independent. of the parame*er of “ransformation if

B2 = 3B, = 22 -2 = O = 2B - 2B (227)

Two independent equations are obtained from (2.27). As a result, we get
By = B> = O which means the method is inapplicable.

Assuming for now that such a situation does not exist, Eq. (2.23) becomes

N To\ 1, A\ N

a ] 1 e o
.21 Ay (—;-:Dﬁ ' (-11_) Figi = o (2.28)
1‘:2

With one relation between B; and B, cbiained from Eq. (2.24), the other
relation required for the solution of B; and By can be obtained by putting
the slope at x = 0 equal to the parameter of transformation, B, i.e.,

di({o - B (2.29)

After transformation, we have:

Bﬁz‘Bl d?io)

dx = B

which is independert of B if

B - B1 = 1 (2.30)



, = = 1 (2.31)

Equations (2.24) and (2.30) give solutions to B, and Bas.

Finally, the value of B can be found by applying the boundary condition
at the second point. Thus:

Case I:
BZ’dBl d Y(w - x
dxd
or,
e
dX J
Case IT:
dd_
5§% -0 at % = 1
or,
L 1/p:
B = —= (2.33)
x(where 9—% = 0)
ax'
Thus, . (2.28) is solved with the boundary conditions given in Eq.

(2.31) and fhe value of X where d y/dxd = 0 can be found from the solution of
the transformed equation. This result is then substituted into Eq. (2.33)
and the value of B computed. I% should be noted that there are cases where
additional problems may arise., Asan example, if the value of B in Fg. (2.15)
is negative and also n = 1, then

with the boundary conditions



The solution is

34
i
> =
wn
@
joi
o
>
x|

which is never zerc., This placeg sncvher limisation on the method.

The boundary conditions at x = L in case II need not be homogeneous. For
example, one may have

o
]
I
=
o
e
t

Thus,

) d—
-d
BBa B1 dy

=3 k at Bl = 1 (2.34)

Since k, L, PB; and Bo are kncwn _constan*s, the value of B can be found by
searching for values of X and dd§/dfd in <he solu*ion of Eq. (2.28) which give
the same value of B in both equations of Eq. (Z.34). One way of doing this is
by eliminating B in Eq. (2.3L4) which leads +o

d- B
d L. a- B2
ai% = k(3) & 3. (2.35)

Next, (ddy/dxd) vs. X is plctted as a curve. Ancther curve from the solution
to Eq. (2.28) can be plotted with the same coordinates. The intersection of
these two curves will give the required value of X and ddyydfd which in turn
can be used to compute B from Eq. (2.34),

One final remark abocu* the method is necessary. Suppose the boundary
condition at the initial point is dy(O)/dx = 0, Ir this case, we merely
have to put

y(0) = B

Thus,




and if the result is to be independent of B, Bs must be equal to 1. Under no
circumstances, however, should the boundary condition at the initial point be

nonhomogeneous. If it is, one more equation relating B, and B, will result.
The method then cannot be applied.

2.1.,2 Spiral Group of Transformations

We now consider a class of nonlinear ordinary differential equations in
which a spiral group of transformation rather than a linear group is needed for
the method tc apply. We consider here the class of equations

- N A\ piy _a; |
izl ! <d—x—é> <E> e x® =0 (2.36)
with the boundary conditions

Case I1:

Case II:

= = 0 X = o1y = k

where Ci, mj, ni, pi and qi are constants and N is the number of terms in Eq.

(2.36).

Le* us define the one-parameter spiral group of transformations

X = e X, y = T+ ogh (2.37)

where A is the parameter of *ransformation and o and Qp are constants to be
det.ermined,

Under this group of transformation, Eq. (2.36) becomes

N " - + +
5 Cie( Bmidl 0,00 "p,;ae qial)A
=1

22 mi A1, _ .
X <§§%> <%%> iPi¥ g4 = ¢ (2.38)

11
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The equation is seen to be independent of ihe parameter of transformation,
A, if the powers of e in each term are equal, i.e.,

(-Zmi -0yt qi)al * Py Q2

= (-2my - n; * Qo t P Qs (2.39)
where i = 2,...,N, The *ransformed equation becomes
3 PPN ATN L piT —ay
L G EF) &) FTEL =0 (2.50)
l:

Equation (2.39) represen®s (N-1) equa“ions. In general, the method can
be applied only if one independent. equa“ion resul%s from these (N-1) equations.
For example, if Eq. (2.36) %akes the form

a= 2 d
a;% + = a% +e¥ = 0 (2.41)

Equation (2.%9) then gives cne independert equation for oy and ap as

201 = Qs (2.42)
Physically, Eq. (2.41) may be interpreted as the equation for heat con-
duction in spheres with exponential heat generation-”.

To determine the seccnd relation for *he solutiocn of ¢ and ap, we put
y(0) = A (2.43)
Upon transformation, fthis condition beccmes:
y(0) + oA = A
which is seen t.o be independern of A if

Qs = 1 (2’4’4)




The transformed boundary conditions become

J(0) = 0 and %O—l = 0 (2.45)

For the example given in Eq. (2.41), a; and Oz can be found from Egs.
(2.42) and (2.4L4):

1
(04} = "2- and Qo = 1

Finally, to get the parameter of transformation, A, the boundary condition
at. the second point is used. The two cases are considered separately.

Case I. The boundary condifion at x = 1 becomes

F+A = 0 at &A% - g (2.L6)
Eliminating A, we get
eV x = 1 (2.47)
Case II. The boundary condition at x = o becomes
X = w V¥ +taA = k;
or
A = =k - §()] (2.48)
U2

Therefore, the method proceeds as follows: First, Eq. (2.40) is solved
with the boundary conditions (2.45). 1In case I, the solution curve to Eq.
(2.L0) can be plotted on ¥ vs. ¥ coordinates. Equation (2.47) is plotted on
the same coordinates. The intersection of these two curves gives the values
of ¥ and ¥ which give the same value of A from Eq. (2.46). The value of A is
then determined. In case II, the value of A can be computed from Eq. (2.48).

13



The solution to the original equation, Eq. (2.36) can be obtained from Eq. (2.37)
since now a3, (o, and A are known constants.

2.2 TWO PARAMETER METHOD

2.2.1 Transformaticn of Two Bcundary Conditions

The method develeped in the preceding sechtion can be extended to higher-
order differential equarions as long as only one toundary condition is required
to be transformed. In this section and the next section, the method will be
extended to higher-order differential equations in which more than one boundary
cendition need to be fransrormed. For such cases, multiparameter groups of
wransformations are required.

Consider now the third crder differ=ntial equation

N aN M 2N\ 8\t "
(L) (8 > i&) Si %1 -
izi Ay <;x;> 2 <§x, ytx = 0 (2.49)

subject to the boundary conditions

Case 1.
d d
d Ty(=) _ aZy(=) | oy
y(0) = 0, d; =k, ds 2
dx dx
Case 1II.
.dl d2 .
_ dty(L) a =y (L)
y(o) - O’ dxd'l - O’ dxdz Ke

We now define a twc-parameter group of transforma‘ion

x = Mg,y = 822y (2.50)

Under this group of ‘ransformation, Eq. (2.49) becomes

m; (B-3p1 ) +ni(Be~28; )+r: (B2~ Bl)*s Batt B

~M=
=

1 i

i

ml yo~3y1mi(ya- L/l)*11(72 y1)+Syy2ttyy

<D)nl(gx> (d:)r Ll (2.51)




The method can be applied if, for all i's,

mj (B2=31)*n (B2-2B1 ) +r; (B2-B1 ) +5Ba*tiB1 = C1 (2.52a)
mi (y2=371)*n3 (y2-271)*4r5 (y2-71) +S572*t571 = Ca (2.52p)
where C; and C, are two arbitrary constants.
Equation (2.51) then becomes
N 13T 2Dy ANTy
d7y d7yy b (a7 T 85 =t
f o D™ (T @ e -
uG (@) s ° (2.%)
For example, the equation
43 \ll dy &% 7\ 2
+H| = = + =
d—x%r x> ax dx° (F) 0 (2.54)
belongs to this class.
The boundary condition at the initial point, y(0) = 0, can be transformed
to
yo) = o (2.55)
To get the other boundary conditions at the initial point, let us put
dy(0) d%y(0)
o = B and d_x2 = C (2-56)
Upon transformation, (2.56) becomes
-B: Yo- dy(0
B 72 50) g (2.57a)
dx
and
B2-2B1 y2-2714°7(0)
B C =z = C (2.57b)

15



wnich are seen to be independent c¢f B and C if, from (2.57a),

B - B = 1, v ~y1 = O

m (2.57b),

H
!
@]

and,

Bz -~ 28. = O, v = 2yr = 1

(2.57a) and (2.57b) are then transformed o

= SIS
e sHol -y (2.58)

and the values cf B;, Bo, 71 and yo are

B = 1, B2 = 2, y1 = =l, y2 = -1

To get the parameters of *ransfcrmation, B and C, the boundary conditions
at. the second point are used.

Case I
(2.59a)

k2 (2.59b)

Case 11

KEC o (2.60a)

Xz (2.60b)

16




Therefore, B and C can be sclved from Egs. (2.59) or (2.60).

The method can easily be extended to equations of the type:
N 33 M; . J2an ry
d 14 i /dyN * siy _ts
Y (}_z g; i (}x ity o
;21 1 \axS &dx dx © x 0 (2.61)

The only difference here is that one assumes a transformation group defined by

3, B+y;C
x = e 7Y%,y = §+ BB+ ypC (2.62)

O%her steps remain the same.

2.2.2 Simutanecus Differential Equations

Application of the method to simutaneous aifferential equations again in-
volves mutli-parameter groups. Consider now the following system of two simu-
“anecus equations:

N - 2.\ dY\n~ 2\T S.
i i> i (l- i g /a f) 1 di) ity qn
igl Aj (é;g dx, y 2 = z 1l x1i 0 (2.6%a)
M 2N\ . T, B 12 T 1 g Os ~
d=y\* . éz Py d“zY j/dz\"5 b _4.

2. By —-—§>~3<d)>3 = = Jdxi = 0 2.63b

j=1 9 \dx LA de (2.63p)
subjec* to the boundary conditicns
Case I.

. 3%y () daz(w)
0) = 0, z{0) = O k3 = = ko

Y( ) ’ ( ) » dxd b dxd

Case 11,

_ 44y (1) a9z (1)
v(0) = 0, 2(0) = 0o T o= 0, T =k

2

Let us now define a twe-parameter transformation group

- Bi x P38y (2.6L)



Again, the differential equations, (2.63), are independent. of the parameters
of transformation, A and u, if the powers of A and u in each term are respectively
~he same. This leads to the following system of equations for the solution of

31, Bay Bz and T:
(B2-2B1)m; + (Ba-Br)ng + Bz py + ri(Ba-2p1) + S;(B3-Bz) * 3 Bs * a3b1

= (Be-2B1)mi + (Ba-P1)n1 + Bo p1 + r1(Ps-2B1) + S1(Ba-B1) + t1 Ba *+ q? B% )
2.65

I'i + Si + Jf:l = ra + Sl + "31 (2-66)

(B2-2B1 )Wy + (Ba-BL)Tiy * B2 Ty *+ Ty(Ba-28:) + 5;(Ba-p1) * 15 Bs + Ty A

= (Bo-2B1)Wy + (Bo-B1)A1 + B2 T1 *+ T2 (Bs-2B1) + S1(Ba2-B1) + %1Bs + Et B% )
2.67

Ty o4 §j + Tj = ¥, +8; + 71, (2.68)
where 1 = 2,..., Nand j = 2,...,M,

Substitution of Egs. (2.66) and (2.68) into Egs. (2.65) and (2.67),
resepctively, gives
(mi+ni*Pi)52 - (Zmi+ni+2ri+si"qi)51

= (my+n;+p) )Rz - (2my+ny+2r;+S1-q1)B (2.69)

M.+ 4D, ) - (2m. .40 .+57 .+5.-3.
(W, #0,%B )82 - (2Wy*0 +2F ;48 5-04) B

= (MM +0)Be - (2M+m+ 271 + 51 - @ )p
(2.70)
The method is applicable if Egs. (2.69) and (2.70) each represent only
one independent equation and tha* both give the same ratio of 32/51- If these

conditions are satisfied, the ra%tio of 32/5; is known.

Next, the required bcundary contions are defined tc be equal to A and p
respectively, i.e.,
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Upon transformation,
xeg"a'*‘y"(o) = A and ud xBS’B.lE'(o) =
which then give
P2-B1 = 1, & = 1 and Bg-f = O (2.71)
The ratvic cf Bg/B1 cbbalned from Eqs. (2.69) and (2.70), together with

Eq. (2.71), gives solutions cof Bi, Bs, Bs and d.

To ge'. “he parameters of fransformation, the same method discussed in
previous paragraphs can be applied. It will not be repeated here.

The method can be easily generalized *o include cases with exponentials
of y or z or both in Egs. (2.63).
2.3 MORE GENERAL TYPES OF EQUATIONS

The methcd developed above can te extended to more general types of

equation. Two cases are considered here. Consider now the general seczcud
crder differential equaticns:

M 12N+ . /3v\Ss ‘
(Y% b, 5‘—%) J (—y-> 3 yT3 %3 = 0 (2.72)
o 9 \ax

where G represents an arbitrary function of the argument indicated.

Case I. The methcd can be applied if, under the linear transformation group

only one relation between o and ap is obtained from the condition that Eq.
(2.72) is invarian® under this group of “ransformation.

As an example, the equaticn
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2

Bu"f's‘ 9hx)-y‘-;}_:
LA n Y i 0

will give one relation between ¢ and qp, namely,
20z ~ Ay = 0

Case II. If y is absent in all terms in Eq. (2.72), *he spiral group of trans-
foermation can always be applied fcr any arbi“rary functicn in Eq. (2.72). As
an example, ccnsider

d%y 7AYN
—5+ £ (L1 = 2.7
5 1(/ 1 0 (2.73)

where f; is any arbtitrary function cf dy/dx. Under the spiral group of brans-
formation

Eq. (2.73) becomes

6-2011 a d—z:}-f_

=pa d—x _
+ +1 = 0
—5 fi(e —) + 1

which is independen' of a if oy #= O for any arbiirary function f;. The remaining

steps remain the game.

2.4 CONCLUDING REMARKS

In this secticn, the applicaticn c¢f a linear or spiral group of transforma-
*icn *o the class of *ransformation frcem a boundary value to an initial value
prcblem is treated. The method ccnsists of three basic steps. First, a trans-
fermatien group is defined and *he given daifferentvial equa*ion is required to
be invariant, 1l.e., independent ¢f the parame'er of transfcrmaticn, under this
grecup of transformation. 1In step &, the required boundary condition is set to
be equal *c the parameler of transformation. Finally, “he parameter of trans-
fermatiion is feound by using the bcundary condiiion a* the second point. Know-
ing this general ccncep*, *he methcd treated in this article can be applied to
higher-crder equalions or other Sypes of equaticns. 1t is simple %o apply and
cnly algebraic sclutions are required %o get the Sransformation. The main dis-
advanrtage of this method lies, however, c¢n the arbitrariness in the selction




of a proper group for a given differential equation. In the next two sections,

a very general method will be developed which makes it possible to search for

all possible groups of transformation under which the given differential equation
can be reduced to an initial value problem.
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3. GENERAL GROUP-THEORETIC METHOD

5.0 GENERAL CONSIDEFAT1ON

In order tc¢ introduce the general group-theoretic method, the method
developed in sec*ion 2 will be summarized by considerirng a second-order ordinary
aifferential equanicn as follews:

Consider the ordinary differential equation

4%y 4 A
FI(EX_}Z{) ;‘XY) Ys y;) = 0 (3'1)

with the bcundary conditions
y(0) = o, y(6) = a.

The differential equation is transfcormed by introducing a one-parameter group
of transformation, viz.,

X = f‘(-i) A, on, QQ)

vy = o(F. A, o1, ap) (3.2)

where oy and oo are ceonstan's Lo be determinea befcre the transformed equation
is sclved, and A is *the parameter of “ransfcrmaior. Lc be determined af‘er it
s sclved,

To determine ¢; and Qp, “wo ccndi‘icns are imposed:

i. the given differential equa‘ion is Lo be invariapt; il.e., 1t should be
independent of the parameter of btranstormalion, Aj; and
11. “he boundary condi*ion ay(0)/d¥ is to be independent of A for some choice
of dy(0)/dx as a functicn of A,

If oy and qp can be found sabisfying the above conditlons, the method can pro-
ceed

The transformed different,ial eguation can now be solved as an initial
value problem with the initial condibticns y(0) = O and d¥(0)/dX = b, where




b is the value resulting frcm condition ii. If the solution of the initial
value problem is denoted by ¥ = b(X), the value of A needed for the completion
of the soluticn of the original equation is sought by solving the following
system of equations:

y = h(x) , 1 = f(x, A, 02) , a = g(¥, A a, Oé) (5'3)

The last two equations come from the boundary condition at x = £. The method
fails if no values of A can be found from Eq. (3.3).

The key steps in the above scheme are the selection of a sgpecific group
of transfermations and the requirement that the given differential equation be
invariant under this group of transformations. For a given differential equation,
the equation may not be invariant under a specific preassigned group of trans-
formations. This does not rule out that it will always so if other groups are
introduced. It 1is therefore clear that a method of searching for possible
groups under which the given differential equation be invariant is of great
importance. To achieve this goal, the two steps mentioned above are reversed.
One starts by requiring that the given differential equation be invariant under
ar "infinitesimal transformation". The resulting equation is then used to
search for the possible groups of transformation which satisfy this requirement.
This necessitates a brief review of those concepts given in Reference 6 which
are related to this method.

3.1 THE INFINITESIMAL CONTACT TRANSFORMATION*

3.1.1 Infinitesimal Transformation

Let the identical transformation be

B(x,y,8) = x
V(x,y,85) = ¥ (3.4)
then the transformation
Xl = ¢(ny)ao+8€)
Be (d de? /32
= Ax,v,80) +r<'aé> +'2‘:—<§;g)a MEEDE (3.5)

*For detail, the reader isreferred to Reference 6.
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vy = ouix,y,a *8t)

| de [V 8 /%
wovae) + 15 (R, 57 ‘a;re)ao T e

]

assuming %e is infinitesimal, neglecting bhigher crder terms of 8¢ and using

‘he relation for the iden%vical *ransfcrmaticn, we puh
AY
xp ¢ ox ot E(x,y) Be

vi = y *nlxy) & (3.7)

3,1.2 Notaticn for the Infinitesimal Transformaticn

The employment of the infinitesimal transformation

xp = x+ &8 and y; = y +7 Be (3.8)

in conjunction with the functicn f(x,y) will be to transform f(x,y) into
f(x:,y;) which upon expanding in Taylor series, becomes

£(x1,y1) = f£(x+EBe, y + nde)
N \ de 6f‘ 6f‘
= flx,n) + I% (¢ = 0 S;)

8c? , o O°F 3r s O°f
+ —s + 2 —
Y (¢ W ey TV 3 )
e e e  k Ca m e e B e e e s
. A r anf , .0 n-i F £ o
n. r n r-1
‘ ax Ox Ay
~NI1
_________ =< Q_i)
wn
. : o) .
=P (x,y) ¢+ ?% UF o4+ 2% UBE 4 wecceceae- (3.9)

where




vt o= §%+”% (3.10)

is called the group representation and 1 f meeans repeating the operator U for
n times.

3.,1.3. Invarisnt Function

If £f(x1,y1) = £{x,y), then f is invariant under the infintesimaa'trans-
formation.

Theorem. The necesary and sufficient condition that f(x,y) be invariant under
the group represented by Uf is Uf = 03 1.e.,

of of
§§+"a_y=° (3.11)

To solve for the invariant function, we solve the related differential
equation

&x
g

“#

(3.12)

If the solution is
Q(x,y) = constant (3.13)

this function is the invariant function for the infintesimal transformation
represented by Uf. Since Eq. (3.12) has only one independent solution depend-
ing on a simple arbitrary constant, a one-parameter group in two variables has
one and only one independent invariant.

3.1.4. Extension to n variable

The condition for f(xl,...,xn) to be invariant under an infinitesimal
transformation is :

f
uf = gl(xlx"';}&))g;c—l'*' ------

pee (s ) B = 0 (3.14)
n

To get invariant functions, we solve
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3 T (%.15)

Since there exist (n-1) independent solutions, a one-parameter group in n
variables has (n-1) indpendent invariants.

5.1.5 Invariance of an Ordinary Diffe.ential Equation

Censider a kbth-order ordinary differential equation

F(x, V) 3% 5", eene,y8) = 0 (3.16)

This equation 1s invariant under +%he infitesimai “ransformation defined by

X = x +8& t(x,y, ")
y = y+denlx, v, v")
?' = y' + e m, (X, Y y')

- - -

y = Y(K) + Be T (XJ ¥ y'y-":y(k)) (3-17)

if the follcocwing cendition is satisfied:

UF = O (3.18a)
cr, in expanded form,
- - N o (
3 - + 7 S + 1y S T o ay(k) = 0 (3.18b)

For a given group of transformation, bhe functions €, n, my,..., 7 are
known. Equabicn (3.18) gives “he condition which the given differential

—

equa' ion, Eq. (3.16), musht salisfy if it can be ‘ransformed to an initial value
preblem.  However, if the grcup of transformaticn is not given, Eq. (3.18) alone
will nc* be encugh Lo search for possible groups. At this point, the theories




developed in Reference 6 on the concept of an infinitesimal contact trans-
formation must be introduced which will ultimately makes it possible to express
these functions in terms of the so-called 'characteristic function'.

3.1.6 Definition of a Cenhtact Transformation¥

When Z, N1, Xo, 00Xy Pl,...,Pn are 2ntl independent functions of the

2n+l independent quanrtitles z3, Xj,ecc, Xp, DPlyee-, Pn such that the relation

dZ - Py &X; = p(dz - pjdxy) (3.19)

(where p dees not vanish) is identically satisfied, then the transformation
defined by the equations

z' = Z,x' = X, p' = P (3.20)

is called a contact transfcr-mation.

3.1.7. Infinitesimal Contact Transformation

Frem Eq. (3%.19),

4 oz 9z
5, 42 * 3, dx; + 30, dp;
) X4 L OKi X3

dx.. + d
Py 42t 5 Wy T g 9Br)

oldz - Dy dx. ) (3.21)
For the infinitesimal transformation
Z = z +8et; Xy = x5 téeky, Py = p;tbemy (3.22)

1 1

we get

*S. Lie, Ma“h. Ann., t. viii, p. 220
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=14
oz

-
opy P SE;

3
dz

3t

[ | S S
x, P13,

If a characteristic funcuvion, W,

Higher order transformation functions,

pressed in terms of W.

they will not be included here.

6.

.._.Jpr

defined as W = p; &y
oW -
= P - W,
! 9p;
o
" Pry

(3.23)

- £, then

(3.24)

s Tijko etc., can also be ex-
. However, due to the complexity in their derivation,

For detail the reader is refered to Reference

we consider an infinitesimal transformation

where p = dy/dx, q = d%y/dx® ana r = &% /ax°>.

+

+

+

(8e) E(x,
(8e¢) O(x,
(3e) n(x,
(de) k(x,

(3e) olx,

p)
Y, P)
¥, P)
¥ b Q)

Y, Py Q I‘)

be expressed in terms of a characteristic function W as™:

S

B

dp

p 85 -

XW

W

28

W

However, a special case with cne indeperdent and one dependent variable
will be given here since it will be needed in the next section.

For this case,

(3.25)

The transformation functions can



5 3
-k = (X% + 24X — +
o o= (X3 q B . 3q°X —"-22 +
op dp
> v O > —
L _ 4+ 3x 2. 9
+ r(3q 502 5 > * Ll

where the operatcr X = o/dx + p & dy.

3,2 THE CENERAL METHOD

5% o)

2 o ~\
T 2 T e Y
d3 d 3% —
3 S = . 2

(3.26)

With <he bacggrcourd discussed in Secvlons 3.0 and 3.1 in mind, the second-
craer ordinary differential equaticn is again used to illustrate the steps for
“Le nransfermation from a bcoundary value to an initial value preblem and the
seasch of pcssible groups to achieve the transformation.

Consider again Eq. (3.1), *he methcd proceeds as follows:

i. An infitesimal transformation is defined, as in Eq. (3.29) except

ihe transformation for r is not needed here.

The given different.ial

equation, Eq. (3 1), is required to be invariant under this group
of transformation, i.e., it mus% satisfy Eq. (3.18).

ii. The transformation funchicns can be expressed as a function of the

characteristic function, W, as given iun Eq. (2.26) TFg
now becomes an equabticn with an urknown function W-

form ¢f W can be predicted.

(3.18)

The functicnal

ii1i. Afrer W is kncwn, the transformation functions become known functicns
and +the finite form of the *ransfcrmation can be derived by Eq. (3.9)

Twe examples will be given in the nex% sectlon.
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4, APPLICATION OF THE GENERAL GROUP—THEORETIC METHOD

In this section, the general theories given in section 3 will be applied
tc two examples, namely, the Falkner-Skan problem and the heat conduction

equation with ncn-linear heat generation. These examples serve only as illustra-
+ions of the me*hod.

4,1 APPLICATION TO FALKNER-SKAN SCLUTIONS

Consider the well-known Falkner-Skan differential equation from boundary
layer theoryl:

£ "+l - £'%) = 0 (4.1)

The boundary conditicns are

[
-
O
g

[
H
—
o
g
H

0; f'(0) = 1

We now use the notaticns

p = f-l s q = fll , T - fln (’4-2)

then Eq. (L.1) and its boundary condi“icns become

r+fq+p(l-p%) = 0 (4.3)

with boundary conditions

Next, an infinitesimal transformation is defined as6

o= o+ (8e) &(m.f,p)

=
3l

f'

£+ (%¢) oy, £,p)
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i

p' p + (d¢) n(n, £, p)

I

qQ' q *+ (8¢) k(n, £, p, q)

r' = r + (66) D(T]; f, b, q, I‘) (J-J-.Li)

where, 1in terms of the characteristic function, W,

N
g - ap
o w
e = p 3 - W
-x = X W
d % A\
-k = (X2+2qXSE+q2$2-+q'é—f)w
— 3 2 EL, 2 éi_ 3 as ii 2 82 -
-0 = (X + 32X 3 T X e 30 X 57+ 3 afap)w
d>° ) d \— .
+r‘(3q—a;§+ 5Xg§ +§)W (L.5)
The operator X in Eq. (L4.5) is defined as
_ 9 9
X = an TP of ()4'6>

According to the theory discussicn in the previous article, the condition
imposed on the differential equation is that it is independent of the parameter
of transfcrmation, ¢, under the transformation defined by Eq. (4.4), i.e.,

F
56 = 0 (1“7)

where F represents the differen*ial equatiocn, (L.3). Equation (L.7) can be
written in i*s expanded form as
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OF , GO, F LN _

5*5—5 'a"i:+ﬂ§-1; x par-o (L.8)
Replacing F by the left side of (4.3) gives:

Qg6 - 2pn + £k + p = 0O (4.9)

The functions 6, =, k, and g, given by Eqs. (4.5), are substituted into Eq.
(4.9) and we get

Ag + Ay g+ A +A53¢% = 0 (4.10)

where the variable r in the function p, Eq. (L4.5), was eliminated by using
the differential equation, (L4.3), and the A's are given by

Ap = 2PPXW - £X7W - X3W + (1 - p®) (3% —a% + —g;)W (4.118)

A, = p-g-zwﬁn5XZ%-§X%§+fX%+BB(l-p2)%a:—E (4.11Db)
Az = of %?; - X g:E -2 g?gp (k.11c)

Ay = %SE (4.114)

Since the characteristic functicn, W, is independent of q, Eq. (4.10) is
satisfied if the coefficients are all equal *to zero identically. Thus

Ao = A = Ay = Az = O (4.12)

The equation Az = 0 gives

%}E = 0 (4.13)

which means W is quadratic with p, i.e.,
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W(T]J f:P) = ﬁ{ﬂ) f)PE + Wz (T]) f)p * %3(71) f) (L.1h)

This form of W can now be substituted into the equation A, = 0, Eq. (4.12),

and the result is

%_5%)_12 awl

(LfW, - 6 5 37 vl 0 (4.15)

Since both W, and W, are independent of p, Eq. (4.15) leads to

MW
pY: g;‘ = 0 (L4.16)
- MW, . W
ot Y Wy - 6 el —;2 = 0 (4.17)

Eq. (L.16) shows that Wy is independent of f, i.e., Wy = Wy(n). Thus, Ws
can be found from Eq. (4.17) as

— 1 —
Wo(n,£) = 3 (20%W, - 6 W' + Ca(n)) (4.18)
The characteristic function, W, now takes the form
— — 1 — — \
Win, £,p) = Wi(n)p® + Z(20FW(n) - €W ' (n)f + Co(n)lp + Wa(n, £)  (4.19)

This new form of W is now substituted into the condition A; = O which
than gives

By + By p + Bgp® = O (4.20)
where

— — Iy _ f _

BO = —wa - hfz Wl” + @l"'f - Cl” - 3 %’g? + % fswl' + '3 Cl' - 65W1
N (Lk.212)

X3 T3 N aEWﬁ

By = (6 -8f)W;" +6W," -3 572 (4.21b)
By = -3Wy (1 + 2B) (L.21c)
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Since beth Wi and Ws are independent of p, Eq. (4.21) gives

Bp = Bi = By = 0 (h.22a)

or,

Inarf =0
(4.22b)
: " %W
(6-8f)Wl + 6W1 -3 'a_ffza = 0 ()-#-22C)
W (1 +28) = O (Lh.22d)
Thus, from Eq. (4.22d),
W, = O (L.23)
From Eq. (L.22c),
%fga = 0 (4.2k4)
f
which gives
Wa(m, £) = War(n) + Wax(n)f (k.25)
Eq. (4.22b), then becomes
Way - Waof = C1" - 3Wap' + %Cl' = 0 (4.26)
which gives
Waz - C1" - 3Wan' = O (k.27a)
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Mo +C—%—' = 0 (4.270)
since ng; ng and C- are functions of 7 alone.
Egs. (L4.27a) and (4.27b) give
Wap = =2C" (L.2Ba)
Was = % Cy' (4.28b)
Thus, the characteristic function, W, becomes
W(n, £,p) = % Ci(n)p + % Cy'f- 2cy" (4.29)

Finally, the characteristic function, W, is substituted into the last

condition in Eq. (4.12), namely AO = 0, which leads to the following equation:
Do + Dif +Dgp + DagfZ + Dy £ p = O (4.30)
where
DO = 2C1(V) + 3z Ci'B
2
Dl = gcl(lv)
Dg - _uBCl e 3 Clut
1
D3 - - __3.. C_L e
2 "
D, = (58 - 1) (L.31)

Since C, is a function of 7 only, Eq. (4.30) gives

55

Dy = O (L.32)




If B # 0, then Eq. (L.31) shows that C; must be a constant which then leads to
the result that

W(n,,p) = 3 Cip (k.33)

For the case in which B =0, C1" is zero, i.e.,

Ci(n) = Ciin + Cis (4.34)

The characteristic function becomes

— 1
W(n,£,0) = 3(Cuan + Caz)p + 3 Caaf (k.35)

As a last step, the finite form of the infinitesimal transformation must
be sought.. This can be done by using the equation

i, fa) = plnf) + 25 Ug + 2

where

_ % o)z}
Up = &5 YO %f

Consider first the case in which B # O with the characteristic function
given in Eq. (L4.3%). For this case, using Eq. (4.5), the operator U is

1.9
U = 3 Claﬂ
By taking ¢ to be 7 and f respectively, we get:

1
M = nt3 C, Be

i
)

£, (4.37)
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Although this group exists under which Eq. (4.1) is invariant, we will not be
able to trarfsform the boundary conditions. Thus, the problem cannot be trans-
formed to an initial value problem, unless B = O.

For the special case in which B = 0, the characteristic function 1s given
by Eq. (4.35) which gives “he operator U as

1
U = %(Cun * Ciz) g—n - % Ciaf % (4.38)

Again, by putting into Eq. (4.36) § = 1 and ¢ = f, respectively, we get

Se 1 C; 8¢ 1., o Cy
= === s 2E2Y 4 = (I¢ + =L2) + oo
N1 M 103 11(ﬂ Cll) 5 (j 11) (n Cll)
or,
(T] +93;2): (T]+9;g>[l +§_€.}.Cll+§€_2_(£cll)2+ _______ ]
17 1 Ciy 13 2! 3
C C]_lf)G
_ (,q + _;L_.g) e-i (’4-59)
Cia
and
e 1 Oe 1
f = £+ " (- 3 Cip)f + Y (- 3 C11)°f + ===-=-
2
-t g T
L1108
= f e % OF (4.40)
) .
If we put A = e e, Eqs. (4.39) and (4.40) give
C, Cy %Cll
(g + =28y = (n +228) 4 (4.41a)
Ciz Ciz
i
f'l = f A 5 (uoulb)

This is seen to be the linear group of transformation. For the present case
in which the initial condition is given at zero, Cip = 0.



To finish the analysis, we can follow exactly the same steps as given
vetween Egqs. (2.7) and (2.14).
4,2 APPLICATION TO THE HEAT CONDUCTION EQUATION WITH NONLINEAR HEAT GENERATION

We now consider the heat conduction equation with nonlinear heat generation
as follows:

42
a=T + k+1l dT

il £(T) = O© (4. 42)

The boundary conditions are

dT(0)
ax

0O and T() = T

The value of k can be -1, O or 1 which correpsonds to plate, cylinder or sphere
cases, regpectively.

If the following notations are defined:

4T 42T
P = L 9= 33 (4.13)

Equation (4.42) then becomes

1]
(@]

q+ 5% p + £(1) (4. k)

with the boundary conditions
p(0) = 0 , T(1) = To
It is the purpose of this example to find the function f(T) which enables

the problem to be transformed to an initial value problem.

Again, an infitesimal transformation is defined as

Y

x' x + (6€) §(X7T:p)

=}
|

T + (8¢) O(x,T,P)
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p' = p+ (%) n(x,T,p)

e
I

q + (%¢) }ZS(X,T,P,Q)

where, in terms of the characteristic function, W,

W
T ¥
W =
6 = p—-~-W
® 3
-n = XW

2
(X2+2qx..a_ ZL

¥
O~
1

The operator X in Eq. (L.46) is defined as:

+
dp q apz"'q

(4. 45)

(L.46)

(4.47)

Next, the condition that the differential equation under investigation be
independent of the parameter of %“ransformation (i.e., invariant under the trans-
formation) is introduced. Under the infinitesimal transformation defined in

Eq. (k4.Lk5),

OF
de

(L. 48)

where F represents the left side of the differential equation defined by

Eq. (L.44). Or, in expanded form,

F I . I,

+ Q@ — + %

OF
t " %or 5 Py T °

(4.49)

Substituting the differential equation, Eq. (4.44), into condition (4.49),

we get

(g+f)e + xf'6 + (k+1l)n + xfp =

(4.50)

The functions &, 6, n, and § are now substituted into Eq. (4.50) and we get
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{((f+xf'p) M e (k+1) (gg +p %%)
3w W > %W
FE TPy P o)
W o . %W - W . W
raf - m S m S xS - e 5B = 0 )

The variable q can row be eliminated by using Eq. (4.L4L4) which gives

_ o -
guxf'W - (k+1) gg - X %;g + 2xf %;SE + xf gg - xf2 %Sg}
ktl W = a7 oy
+ p{(xf' - —§~, 55 - ox oot * 2(k+1) Zxap + 2xf gj@p - 2f(k+1) %52]
3% %W (k+1)2 %W
2 2. . . —
+p {}x 2 2(k+1) 3Top e o 0 (L.52)

For poin® fransformation* under consideration, the characteristic function,
W, is linear in p, i.e.,

W(x,T,p) = Wi(x,T) + p Wa(x,T) (4.53)
Substituting W from Eq. (4.53) into Eq. (4.52), we get
&y * 81 P * ap p2+aypd = 0 (L. 5h4)
shere
ag = -xfWy - (k+1) LA §f§i e oxr T2 4 xr T
ax ax x oT
a; = (k+1)gx;'vaux—g—jW +5xf§¥2w2x%-% 2
B = -2x gig? - X gig‘ + 2(k+1) %ga
83 = -Xg—;—ga (4.55)

*A point transformation is cne whuse hransformation functions, € and O,
in Eg. (4.45) is independent of p.
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Since the a's are functions of x and T only, it follows that

ag = & = ap = ag = 0 (L4.56)
The condition asz = O gives
S5,
3= = O (4.57)

which implies that Wy is linear in T, i.e.,

Wa(x,T) = War(x) + Wop(x)T (4.58)

Substituting this form of W, into the condition a, = 0, we get

= ! BZV—JJ_
-2xWop - X = + 2(k+1)Wop = O (4.59)

Integration of Egq. (4L.59) with respect to T yields

- —1 k+1— — —
Wy = (-Wpp + —fWpp)TZ + WpaT + Wip (4.60)

With W, and W, given by Egs. (4.60) and (4.58), the condition a; = O
leads to the following equation:

= Emall ™ k+l_
3xfWop + ((k+1)Woy - X W3y - 2xWiy - —x Wai )

+ 3T (xWpo - (k+l)Wé2 + ig%ll Woz} = O (4.61)

Equation (4.61) shows that f must be a linear function of T which is impossible
under the assumption made at the outsef that f is a nonlinear function. The
only possibility remaining is

Wos = O (4.62)

With this, Eq. (4.61) is reduced to:
i




kt+1

(k+1)Wai - x W2 - =57 Way - 260y = 0 (4.63)
Finally, the condition ag = 0 gives
- W};Tbg W2 oo ngg : %12 (1-64)
where
by = QWél + Wy1 (4.65)
b= (W o+ W) (1.66)
by = “(Eii W o+ Wis (L.67)

Equation (4.6%) and (4.64) can now be used Lo determine the functional
forms of f£(T) for which Eq. (4.42) can be reduced “o an initial value problem.
We ncw consider the following case:

Case 1 Wy; #0, bg # 0

Using an integral.ing fac'cr

efpdx = (WaT + Wle)mbO/Wll, (4.68)

+he solution to Eq. (L.6L) can be written as

- - bo/W .
£ o= (Wy1T+Wyp) o7 T =) =

'bO/Wll
= aT
Wiy

(W, THW, 5)

Wi o — ~(bpo/Wy, +1).
R ~b,=8) (W, { T+W- O/ Wz .
J(b2 b¢w1l) 1T+ o) aT + Cy (4.69)

For the case in which by/W;, does nc' equal 4o uni’y, Eq. (4.69) gives

b b <W +hoT) —_— b W
+ - i Y -
f - 2 _a—.__( = ())) + (‘L‘w1] +w; ) O/ 11 (h.(O)
0 0 t 0]




ol

Recalling that the heat generation function, f, is defined as a function

of T only, the Coefficients must be independent of x, i.e., constants.

we put

b2 bl le pr—
—_ = C - = C R w = C
bO 2 3 bo(w41 _ bO) 3 11 4 »
b
Wis = Cs = = C
2 5 ) wll &

Thus,

(L.71)

The conditions W}l = Cyq4 and.ng = Cs 1ndicate that by = by = 0, based on
Eqs. (4.66) and (4.67). This in turn means C, = C5 = O. The last condition

gives by = Cg C4. From Eq. (L.65), we get

Ce Cqy = W2 + Cy

Thus,

Substituting Wo; from Eq. (L.72) ir*o the condition given by Eq.

we get C» = 0. As a summary, the following functions are obtained:

bo = Cs C4 ’ bl = b2 = 0 y Wll = C4
— - Ci(Ce-l) =
Wiz = Cs, Woy = —= 5 X , Woz = O

Thus, the heat generation function £(T), takes the form
Ce
£(T) = C1(C4T + Cs)

and the characteristic function becomes

C4(Ce-1)

W(x,T,p) = (C4T +Cs5) + 1 [ )

x]

The transformation functions, & and ©, in Eq. (4.L45) become

b3

(h.72)

(4.63),

(4.73)

(b.7h)

(L.75)



p 2
W
0 = p %5 - W = - (C4T + Cs) (4.77)

The infinitesimal trensforma®ion, Eq. (4.L45), can thus be represented by
(see Reference 6)

_ Cy(Cg-1) Of of
Ur = SRS - (04T ¢ Cs) T (4.78)

As a final step, *the finite form of the infinitesimal transformation,

(L.45), is sough*. This can be done by usirg “he equation (cf. Reference 6,
p. bh-l6):

h=4
f(x1,y1) = flx,y) + %5 uf + (6f) sz T (L.79)

By putting f = x, Eq. (4.79) becomes

X1 = x +

B¢ CalCerl) , (86)% Cq
1: 2 2! 2

1 C4(Ce-1)3¢
3]

+
x[1 + 73 2 ot 2

or,

X} = X exp [gﬁigglilés] = x AC4(CG-1)/2 (4.80)

where A = exp(de). By putting f = T, Eq. (4.79) gives

de
+

T, = T N [-(CaT+Cs5) ] +

(8e)2

[“(C4T+C5)](-C4) + emm--

T + SEETC»] (T + %5_) + [Sﬁgtci)]_e (T + 95-) +

. 4 e C4

Ly




2 2
1, + 85 = (74 Cay(q . LBe)Ca) | (Be)3(cy)
Cs Ca 1! 2!

or,

Ca

I

Ty

(T + S8) exp(-C,0¢] = (T + %‘i‘) A (4.81)

Ca Cy

Thus, the finite transformation is given by

\
N
£Ip

= (T +%i—)A_C4 (1.82)

This 1s seen to be linear group of transformation discussed in Section 2.1
for the case of a power law heat generation.

Consider next the case in which the ratio bo/Wil = 1. The solution to
f in Eq. (L4.69) than becomes

— — b — W -
£ = -(Wy T+ o) ﬁ?ﬁ In(Wy  T+HW o) + (be‘bl-ﬁif) + €1 (Wy1THW15) (4.83)

Again, since the heat generation function, f, is only a function of the
temperature T, the coefficients must all be constants, i.e.,

Wiz = Czy, Dby = Ca, Wipg = C4, Dby = Cs5, (L.8k)

The conditions Wi1 = Cp and Wip = C4 indicate that b; = by = 0, based
on Eqs. (L.66) and (L4.67), which in turn means C3 = Cs = 0. Eg. (4.65) now
gives

Wi = O

so, we can write Wsy = Cg. Substituting'Wzl = Cg into the last condition,
Eg. (L.63), we conclude that Cg = O. The heat generation function is thus:

£ = Cy(CoT+Cy) (4.85)

and the characteristic funchion become

)



W o= CaT +C, (14.86)

By following the same steps as before, the finite transformation is found
to be

X3 = X, (T, + gi) = (T + gé) AC2 (4.87)
Co Co

This case is a special case of "power-law heat generation” discussed above for
a power of unity. I% is to be noted that the same form of W can be obtained
by putting Cg equal to 1 in Eq. (L.82).

Case 2 bo = 0

For this case, integration of Eq. (4.69) gives

b b ~ -
£ o= - = - ﬁﬁ— (Wi T + Wep) + Cy (4.88)
Wii 11

Agsin, the coefficients in (4.88) should be constants, i.e.,
by = C2, Dbz = Ca, W3 = Cs, W = Cg

The conditions Wy; = C4, and Wi, = Cs again lead to Cp = Cq = O (or
by = by = 0). Equation (L4.65) gives

2Wél + C4 = 0
and thus
C
Woy = - =¥ + Cg

2

The condition, (4.63), then gives Cg = O. The heat generation function and
the characteristic function are therefore as follows:

g = Cl (1""89)

L6




W = CuT + Cg + p[-%ﬁxl (4.90)
This is seen to be a special case of case 1, and can be obtained by putting
Ceg = 1 into Egs. (4.7L4) and (L.75).
Case 5 Wi = 0

The differential equation for f becomes

£' - Cof = Ca (k.91)

in conformity with the requirement that f be independent of x. The constants,
Coz and Cg, are

—=— = (Cp and LS. Ca (k.92)
From Eqs. (L4.65) and (L4.6+), Eq. (L4.92) can be written as
Colhp = Wz (4.93)
and
CaWsp = = —— Wip - Wiz (L.9L)
Also, from condition (k4.63), another relation is obtained as:
(R+1)Tgy - WY - S5 Wy = 0 (4.95)
Eq. (4.95) now gives
- k+1

21 = C4X + C5X (h'96)

Substitution of Wsy into Eq. (4.93) yields, after integration, the solution
of Wio:

bt



2(k+1)C 2C
. - —%2—)-4 K+ K (4.97)

Finally, Wy» from Eq. (4.97) is substituted into Eq. (L4.94) and we get

Ca Ca(kt1)XS + 2k(k+1)C,x"2 + C5 05 = O (1.98)

To satisfy this condiiion, six pcssitilities exlst, namely,

1. kx =0
la: Cs = O
1b: C,(k+l) +C5 = O
2. k = -1
2a; Ca = O
2b: Cs = O
3, k #0, k # -1
3a: Cgq = 0, Cy = O
3b: C5 = 0, Cy = O

Using the same technique as before, the final form of the heat generation
function f, the characteristic functicn, W, and the finite transformation are
found to be as follows:

1. k=0
la: Ca = O
CoT
f = Cge? (4.99)
— CytC
W o= 2 —g——i + p(C4*Cs)x (4.100)
2
+C5)d
X, = xe(c4 5)%¢ and Ty = T = éi(c4+c5)6e (4.101)
: 2
lb. C4 +Cs = O
C r
f = = =3 + C6 eCET
Ca
W = 0, which means cnly the iden*ical transformation will
be epplicable transformation.
2. k= -1
2a CS = 0
f = Ce o2t (4.102)




Wo= 2584 p(Cy + Csx) (k.103%)

Ca
C C Csd
(‘Xl + J) = (x + ——4) e 50€ and Tl = T - 9.5.66 (h.loh)
Cs Cs Cxz
C
2b: £ =- 2+ g 2 (k.105)
Cz
W = C4p (k.106)
X3 =X +C4®e, T, = T (L.107)
32 k#0, k# -1
Cz = 0, C4 = O
CoT
f=Cge? (4.108)
C
Wo= 222+ p(Csx) (4.109)
2
Csde C
X; = xe > , Ty = T-2 =2 3¢ (4.110)
Ca
Bba CS = O, C4 = O

Again, the result is the identical transformation, as in case 1b.

Details from this point on and the limitations to the method are the same
as in Section 2. They will not be repeated here.

4.3 CONCLUDING REMARKS

The method developed in this section is seen to be very general and, like
the simple group-theoretic method, only algebraic equations need to be solved.
The general method is, however, considerably longer than the simple group-
theoretic method. For a given ordinary differential equation, therefore, it
is prefered to try the simple group-theoretic method first. If this method
fails, the general method is then applied and the possible group of trans-
formations searched. For certain problems, e.g., the example given in Section
4.2, only the general method can provide the answer. In case both methods
fail, we can conclude that the problem cannot be transformed to an initial
value problem.
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